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We study the rheology of sheared granular flows close to a jamming transition. We use the approach of
partially fluidized theory �PFT� with a full set of equations extending the thin layer approximation derived
previously for the description of the granular avalanches phenomenology. This theory provides a picture
compatible with a local rheology at large shear rates �G. D. R. Midi, Eur. Phys. J. E 14, 341 �2004�� and it
works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes
short. We investigate two situations displaying important deviations from local rheology. The first one is based
on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes
previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases
display, close to jamming, significant deviations from the now standard Pouliquen’s flow rule �O. Pouliquen,
Phys. Fluids 11, 542 �1999�; 11, 1956 �1999��. This discrepancy is the hallmark of a strongly nonlocal
rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations
show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and
the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive
relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the
effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed
layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study
the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.
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I. INTRODUCTION

Gravity-driven particulate flows are central to a variety of
chemical technologies, the pharmaceutical, food, metallurgi-
cal and construction industries, as well as agriculture. These
industries face serious challenges in the handling of granular
materials, including their storage, transport, and processing.
Furthermore, the transport properties of various natural
particle-laden flows, such as dune migration, erosion-
deposition processes, land slides, underwater gravity currents
and coastal geomorphology, are staggered with many unre-
solved questions around the mechanics of the dense solid
fraction motion. The dynamics of dense slowly sheared
granular media �1,2� are strongly different from dilute rapid
granular gases �3�. One of the distinct features of dense
granular assemblies is the fluidization transition and the on-
set flow above a certain critical value of the shear stress. A
comprehensive survey of granular flows in a variety of ex-
perimental settings and conditions performed by various
groups around the world was conducted by a French research
network Groupement De Recherche Milieux Divisés �MiDi�
�1�. The salient feature of this work was to propose in the
region of dense flow, not too close to jamming and of course,
not in the domain of dilute flows where kinetic theory would
prevail, a constitutive equation based on the existence of an
effective friction coefficient. The constitutive relation solely
depends on a single parameter, the inertia number I �1,4�,
which received a simple interpretation as the ratio of a mi-
croscopic reorganization time scale to a macroscopic time of
shear �here, the elementary macroscopic volume is typically
of one grain size�. This approach was proven to be an essen-

tial step as it provides the correct phenomenology when
tested against kinetic theories developed previously for the
dilute flows. It was also successfully extended to take into
account flows confined between rigid walls �5�.

Nevertheless, a full picture of the rheology of granular
flows is still lacking a conceptual clarity. Namely, the transi-
tion from a dense flow regime to a jammed phase remains a
most debated issue �6–8�. In particular, systematic flow ex-
periments with smooth glass beads on an inclined plane have
established an empirical flow rule �also known as Poul-
iquen’s flow rule� which has the remarkable property of res-
caling all available data remaining fully compatible with a
local friction coefficient picture. Nevertheless, one obtains a
paradoxical situation where the associated effective friction
coefficient involves a length scale describing how the granu-
lar flows jams �so-called stop height hstop� and this is quite
far from the described flowing regime. Furthermore, recent
experiments �9,10� and simulations �11� on the same systems
have explicitly shown, in the close vicinity of jamming, de-
viations from the Pouliquen’s flow rule, hence proving the
nonlocality of the granular flow close to arrest. In addition,
such a flow rule, relevant for model glass spheres, exhibits
substantial deviations from experiment when other types of
particles as rough sandy grains are used �1,12,13�.

Since for dense, sheared granular assemblies, no full deri-
vation of the constitutive relations is so far available, one
needs to appeal to phenomenology. Several suggestions were
made to justify the actual constitutive properties �14–17�, but
no consensus has been reached because the jamming of
granular flows is still an area of active research. Some years
ago, a continuum approach, the partial fluidization theory
�PFT�, was proposed in order to incorporate explicitly a de-
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scription of a fluid-solid transition via a Landau-Ginzburg
phenomenological theory of phase transitions. This approach
allows for a nontrivial interpretation both of simulation data
and of experiments �18,19�. It naturally incorporates the con-
stitutive relations in terms of a solid stress tensor combined
with a fluid stress tensor which is valid in a wide range of
shear strain rates �̇. The momentum transport equations,
valid on both sides of the jamming transition, allow us to
describe a mixture of jammed and flowing phases. It never-
theless depends sensibly on the structure of the effective re-
lations describing the phase transition and how the fluid and
the solid stress components are mixed together.

This question is at the focus of the present paper. The PFT
is extended to match quantitatively a set of numerical and
experimental data. Several adjustments to the early formula-
tion of the model parameters were made by comparisons
with numerical and experimental results. For the sake of sim-
plicity, a reduced set of equations have been derived in ear-
lier works �18�; the momentum transport equations of the full
PFT theory were approximated to obtain a more handy “thin
layer limit.” The model also used a simplified constitutive
approach to render the fluid phase �i.e., a viscouslike rela-
tion, independent of the confining pressure�. Remarkably,
even in this simplified form, all of the qualitative features
found so far for erosion-deposition phenomena involving
granular flows were reproduced �12,20,21�, and some quite
quantitatively. Note that recently this approach has also been
used to describe real geophysical flows �22�. Important ques-
tions still remain such as how to connect the PFT more quan-
titatively to extended numerical results and to experimental
data. Furthermore, one need to understand how different
various flow conditions can be modeled as far as grain stiff-
ness, shape or other granular features are concerned.

The structure of the paper is as follows. In Sec. II we
discuss various models for sheared dense granular flows, in-
cluding PFT, and their relation to the most recent experimen-
tal results. In Sec. III, we present the results of soft-particle
numerical simulations. First we describe the simulation tech-
nique and then discuss the existence of an effective local
rheology for an extensive set of simulations featuring a two-
dimensional granular packing under shear. We also discuss
the limitation of the previous approaches based on a single
dimensionless parameter �inertia number I�. We give an in-
terpretation of the results in the framework of the partial
fluidization theory, and show how it can be extended such as
to capture the existence of particle softness and the depen-
dence of the liquid phase rheology with the confining pres-
sure. This extended version of the PFT theory will be used to
confront in the following sections, several experimental re-
sults.

In Sec. IV, flows of rough sandy grains down an incline
will be considered. We will address specifically the question
of flow rules and we will focus on the existence of a jammed
layer at the bottom of the flow. The relation between the flow
profiles derived from PFT and the experimental findings will
also be addressed. Section V is dedicated to erosion-
deposition waves. We will focus on the dynamics of a soli-
tary erosion deposition wave and we will compared the PFT
results to the outcome of experimental findings for rough
sandy grains. Discussion and conclusion are in Sec. VI.

II. BRIEF REVIEW OF THEORETICAL MODELS AND
RELATION TO EXPERIMENTS

A. Bagnold scaling

From heuristic dimensional arguments Bagnold proposed
a simple local relation between the strain rate �̇ and shear
stress �shear �23�,

�shear � d2��̇2. �1�

This relation follows from the assumption that the only rel-
evant time scale in a dense quasistatic granular flow is the
deformation time scale T��1 / �̇. This hypothesis was tested
and improved in many subsequent presentations
�4,14,24,25�. While the Bagnold relation �1� is likely satis-
fied in the bulk of a dilute granular flow, dynamic inhomo-
geneities in slow and dense granular flows result in substan-
tial deviations from this simple scaling law. In addition,
deviations from Bagnold scaling can stem from grain com-
pressibility and cohesion �11,26�.

B. Pouliquen’s flow rule and local effective friction

A more general relation between shear stress and the
strain rate has been recently proposed in a series of works
�1,4,5,27�. In dense flows, the normal stress �pressure� is not
directly related to the strain rate as in dilute regime, and must
be included as an independent parameter. Pressure p, shear
stress �xy, strain rate �̇, grain size d, and density � define two
independent dimensionless parameters, the effective friction
coefficient �eff �28�,

�eff =
�xy

p
�2�

and the dimensionless shear rate I,

I =
�̇d

�p/�
. �3�

The parameter I can be interpreted as the ratio of two differ-
ent time scales, the deformation scale T�=1 / �̇, and the mi-
croscopic or confinement time scale Tp=d�� / p.

The volume fraction � of granular flows �or, correspond-
ingly, density �� is another quantity controlling granular
flows. One reasonable assumption is that the volume fraction
is a function of the parameter I. In this situation one can find
a unique local relation between the effective friction �eff and
the rescaled shear rate I. Experiments and numerical simula-
tions indeed support the existence of a local relation between
the effective friction �eff and the scaled strain rate I for a
variety of flows. In the most of the experiments the effective
friction �eff is a monotonously increasing function of I lim-
ited by the “static” friction value �1 for I→0 and the dy-
namic friction value �2 for high values of I.

On the basis of extended experimental results, Pouliquen
et al. �4,5,27� proposed the following relation between �eff
and I which fits most of the experimental data for glass
beads:

�eff�I� =
�xy

p
= �1 +

�2 − �1

1 + I0/I
. �4�
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Here I0�0.279 is a constant, and parameters �1 ,�2 de-
pend on the materials properties of grains.

C. Flow rule

The flow rule relates the mean downhill velocity of a
chute flow Uf =�0

hvx�z�dz /h with its thickness h and with the
chute angle �. For the most studied experimental system,
corresponding to monodisperse spherical glass beads flowing
on rough substrates of glued beads, an empirical relation was
obtained. It was shown that this relation allows us to collapse
�within a precision of experiment� all experimental data onto
a single curve for the dimensionless velocity Uf /�gh or
Froude number Fr �1,2,5�,

Fr =
Uf

�gh
� �*

h

hstop���
�5�

with constant �*�0.13; here the characteristic height hstop
corresponds to the minimum thickness of the granular layer
sustaining steady-state flow. Note that this relation is consis-
tent with a local rheology �eff�I�. It yields a “Bagnold veloc-
ity profile” characterized by a ratio r of the mean velocity Uf

to the surface velocity Vs, r=
Uf

Vs
=3 /5. More recent compli-

mentary measurements performed in the vicinity of the jam-
ming limit h→hstop have extended this flow rule �9,10� to a
more general form

Fr =
Uf

�gh
� �*	 h

hstop���
− 1
 �6�

with �*�0.22. Therefore, close to jamming, the rheology
locality is now under question as a simple dependence of the
effective friction �eff against a single parameter I cannot
work anymore. Moreover, experimental measurements of the
velocity ratio yield r=Uf /Vs→1 /2, i.e., a value correspond-
ing to a linear shear flow.

Systems involving irregular grains such as rough sand of-
ten show substantial deviations from the standard Poul-
iquen’s flow rule �1,13� as well. In particular, the experi-
ments revealed the existence of a static layer of thickness zstat
below the continuous flow and significant deviations of the
ratio r=Uf /Vs�3 /5 found for the flows of glass beads. We
will discuss these issues below.

D. Partial fluidization theory

A popular phenomenological approach to dense gravity-
driven granular flows is based on the two-phase description
of granular matter; one phase corresponding to rolling grains
and the other phase corresponding to static ones. This ap-
proach, the so-called Bouchaud, Cates, Ravi Prakash, Ed-
wards �BCRE� model, was suggested in Ref. �29� and was
further elaborated on by many other research groups, see,
e.g., Ref. �30�.

However, in real granular flows there is no sharp distinc-
tion between a “rolling phase” and a “static phase:” The
transition from a static to flowing regime is continuous. An
attempt to develop a more general theory describing the non-
stationary behavior of dense partially fluidized granular

flows was made in Refs. �18,19�. This theory is based on the
intuitive idea that in dense granular flows a significant part of
the stress is transmitted through quasistatic contacts between
particles in addition to the “fluid” stresses transmitted
through particle collisions and sliding friction. Thus, the
stress tensor � is represented as a sum of fluid and static
components,

� = �s + � f . �7�

The key idea of PFT is that the separation of the stress
tensor into static and fluid parts is controlled by the so-called
order parameter, 	. For the shear component of the stress,
this separation is defined by a separation function q�	�,

�xy
f = q�	��xy, �xy

s = �1 − q�	���xy . �8�

Without loss of generality, the order parameter is scaled in
such a way so that in granular solid 	=1 and in a well de-
veloped flow �granular liquid� 	→0. On the “microscopic
level” the order parameter can be defined as a fraction of the
number of static �or persistent� contacts of the particles Zs to
the total number of the contacts Z, 	= �Zs /Z� within a meso-
scopic volume which is large with respect to the particle size
but small compared with the characteristic size of the flow.
Defined in such a form the order parameter can be relatively
easily extracted from the molecular dynamics simulations of
soft particles �19�. The separation function q�	� must con-
form to two “boundary conditions” q�	=1�=0, q�	=0�=1.
For the sake of simplicity, a linear dependence q=1−	 was
assumed in the first presentations �18�. More recently, we
extracted this function from a two-dimensional soft particles
molecular dynamics simulation, yielding a more specific de-
pendence �31�

q�	� = �1 − 	�u �9�

with u�2.7. Note that the function q�	�, which fixes the
mixing ratios between the static and the fluid parts of the
stress might be material dependent. In the following, we will
examine in more detail its influence on the jamming proper-
ties of the flow.

Due to a strong dissipation in dense granular flows the
order parameter 	 is assumed to obey purely relaxational
dynamics controlled by the Ginzburg-Landau-type equation
for the generic first-order phase transition,


	 �	

�t
+ v � 	
 = l2�2	 −

�F�	,��
�	

. �10�

Here 
 is the characteristic time scale of the problem, and l is
the order parameter “correlation length” which is assumed to
be of the order of the grain size. These parameters can be
scaled away by the renormalization of the length, time, and
velocity

tnew = t/
, rnew = r/l, vnew = v
/l . �11�

For the sake of briefness below we drop the subscript new.
F�	 ,�� is a free energy density which is postulated to have
two local minima at 	=1 �solid phase� and 	=0 �fluid phase�
to account for the bistability near the solid-fluid transition.
The relative stability of the two phases is controlled by the
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parameter � which in turn is determined by the stress tensor.
The simplest assumption consistent with the Mohr-Coloumb
yield criterion is to take it as a function of “effective slope”
�=max
�mn /�nn
, where the maximum is sought over all
possible orthogonal directions m and n �we consider here
only two-dimensional formulation of the model�. For planar
two-dimensional shear flow we define the control parameter
�=�=�xy /�yy. In the context of the flow on an inclined
plane the parameter � is simply the slope of the plane, �
=tan �, where � is the inclination angle �19�.

III. SOFT PARTICLES UNDER SHEAR AND
CONSTITUTIVE RELATIONS

A. Numerical techniques

To model the interaction of individual grains we use the
so-called soft particles approach described in detail in Refs.
�19,24�. The grains are assumed to be noncohesive, dry, in-
elastic disklike particles. Two grains interact via normal and
shear forces whenever they overlap. For the normal impact
we employ the spring-dashpot model �32�. This model ac-
counts for repulsion and dissipation; the repulsive compo-
nent is proportional to the degree of the overlap, and the
velocity-dependent damping component simulates the dissi-
pation. The model for shear force is based upon the tech-
nique developed by Cundall and Strack �33�. It incorporates
tangential elasticity and Coulomb laws of friction. The elas-
tic restoring force is proportional to the integrated tangential
displacement during the contact and limited by the product
of the friction coefficient and the instantaneous normal force.
The grains possess two translational and one rotational de-
grees of freedom. The motion of a grain is obtained by inte-
grating Newton’s equations with the forces and torques pro-
duced by the grains interactions with all of the neighboring
grains and walls of the container.

The advantages and limitations of the employed contact
force model were thoroughly studied by a number of authors
�24,32�. In fact this is the simplest model accounting for both
static and dynamic friction. All quantities are normalized by
an appropriate combination of the average particle diameter
d, mass m, and gravity g �while the simulation are performed
for zero gravity, the gravity acceleration g is used only to
construct formal time scale t0=�d /g�. Thus, distances, x ,y,

time, t, velocity, v, force, F̃, spring �elastic� constant k, and
stress �, are, respectively, measured in units of d,t0,v0=�dg,

F̃0=mg, k0=mg /d, �0=mg /d2.
The equations of motion are integrated using the fifth-

order predictor-corrector �34� with a constant time step. The
spring constant kn and damping coefficient �n were chosen to
provide the desired value of the restitution coefficient e and
guarantee an accurate resolution of an individual collision.
Typically, we used a tangential friction coefficient between
particles �t=0.5, we varied the dimensionless stiffness of the
grains kn in the range 102–104, and we adjusted the viscous
damping �n to obtain a fixed normal restitution coefficient
e=0.92. Simulations for smaller values of the restitution co-
efficient �e=0.87� produced qualitatively similar results. We
also used the fixed ratio of the tangential and normal spring
constants kt /kn=1 /3.

B. Simulation of a two-dimensional packing of soft grains
under shear

The simulations were performed in two-dimensional ge-
ometry in the absence of gravity. The computational domain
spans a 50d
10d area, and is periodic in the horizontal di-
rection x. The granulate is slightly polydisperse to avoid
crystallization effects. We assume that the grain diameters
are uniformly distributed around mean size d with 20% rela-
tive width. To provide a link between micromechanical quan-
tities obtained through simulations and continuous fields, a
coarse-graining procedure was applied �19�. Since all experi-
ments described below deal with steady quantities, the pro-
cedure consists of two steps: space and then time averaging.
The top and bottom “rough plates” were modeled by two
straight chains of large grains �twice as large as an average
particle diameter�. The two plates were under fixed pressure
p. The layer was chosen narrow enough, so the properties of
the granular layer �shear rate, shear stress components, order
parameter, etc.� were constant across the layer. Two opposite
forces F1=−F2 were applied to the plates along the horizon-
tal x axis to induce shear stress in the bulk. We started with
large forces well above the fluidization threshold and slowly
ramped them down in small increments until we reached the
critical yield force at which the granular flow stopped. At
every “stop” we let the system reach the stationary regime
and measured all of the stress components, the strain rate,
and the order parameter. Finally, we averaged the data over
the whole layer and over the duration of each step. At any
moment of time all contacts were classified as either “fluid”
or “solid.” A contact was considered “solid” if it was in a
stuck state �Ft��tFn� and its duration was longer than a
characteristic time t* which was slightly larger than collision
time tc �we used t*=1.1tc�. The first requirement eliminates
long-lasting sliding contacts, and the second requirement ex-
cludes short-term collisions pertinent to completely fluidized
regimes. When either of the requirements is not fulfilled, the
contact is assumed “fluid.” We define the order parameter as
the ratio between space-time averaged numbers of “solid”
contacts �Zs� and all contacts �Z� within a sampling area �24�,

	�y� = �Zs
i�/�Zi� . �12�

We split the full stress tensor � into the “solid” component,
�s, and the “fluid” component, � f, in the same fashion as was
done with contacts themselves.

The “fluid” part of the stress tensor is due to short-term
collisional stresses and the Reynolds stresses, whereas the
solid part accounts for persistent force chains. The Reynolds
contribution to the stress is negligibly small in the vicinity of
the phase transition, but comes into play when the granular
aggregate is highly fluidized. In the system which is neither
completely static nor completely fluidized we expect the co-
existence �in time and space� of both phases. A particular
grain may have both types of contacts at the same time thus
contributing to both � f and �s.

C. Rheology and constitutive relations

Following the procedure outlined in the preceding section,
we now report the rheology for a sheared two-dimensional
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granular packing. We performed multiple runs with N=500
particles for several values of the pressure p, shear strain rate
�̇, and inverse spring elasticity constant �. Figure 1�a� shows
the full shear stress �xy normalized by the normal pressure p
as a function of the dimensionless internal parameter I
= �̇ /�p �here and in the following unless explicitly stated, we
set the grain size d=1 and mass m=1�. We see that all data
collapse rather well on a single curve �although there is a
systematic drift of the data�, and the elasticity of the grains
appears to have little effect on the effective friction coeffi-
cient �friction slightly increases with the stiffness constant of
grains�. Our numerical data qualitatively agrees with the
Pouliquen phenomenological law �4� with �1=0.22,�2=0.4,
and I0=0.06 �the original Pouliquen law, Eq. �4�, gives I0
�0.279; smaller value of I0 in our case is likely due to
two-dimensional geometry of the simulation cell�. Now, in
accord with the partial fluidization theory, we can proceed

further and separate the effective friction solid contribution
from its fluid counterpart,

�eff = �s + � f , �13�

where �s=�xy
s / p is the “solid” friction coefficient and � f

=
�xy

f

p is the “fluid” friction. Both fluid and static components
of the shear stress depend on the dimensionless internal pa-
rameter I= �̇

�p
�see Figs. 1�b� and 1�c��. Here we can see a

significant spread of the data among runs with different par-
ticle’s elasticity parameter �=1 /kn, and we observe a clear
lack of data collapse with I in the limit of low shear rate or
alternatively, softer particles.

For compressible grains, the softness, i.e., the inverse
spring elasticity constant �=1 /kn, brings a new time scale

e=�1/2 and then one can build an additional dimensionless
parameter S when it is compared with the confinement time
scale Tp=1 /�p �see also Ref. �4� where a similar parameter
was introduced�,

S = �1/2p1/2. �14�

Therefore, while the total effective friction is rather insensi-
tive to the compressibility of grains, the relative contribution
of the solid and fluid stress components depend significantly
on the grain compressibility. This can be understood because
softer grains can adjust their shape to maintain static contacts
and therefore have greater proportion of shear stress carried
by static contacts �somewhat similar conclusion was ob-
tained in Ref. �11��.

In the following, we focus on the dynamics of the fluid
component of the stress. The data suggest that for large I all
of the curves appear to approach a certain asymptotic slope.
It is more evident from Fig. 2 showing the ratio � f / I vs I,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

µ f
=σ

f xy
/p

0 0.05 0.1 0.15

I=γ./p1/2
0

0.05

0.1

0.15

0.2

0.25

µ s
=σ

s xy
/p

p=25, ξ=2e-4
p=40, ξ=2e-4
p=60, ξ=2e-4
p=25, ξ=5e-4
p=40, ξ=5e-4
p=60, ξ=5e-4
p=25, ξ=2e-3
p=40, ξ=2e-3
p=60, ξ=2e-3
p=25, ξ=8e-3
p=40, ξ=8e-3

a

b

c

0.2

0.25

0.3

0.35
µ e

ff
=σ

xy
/p

FIG. 1. �Color online� Effective friction �eff=�xy / p �a�, fluid
friction � f =�xy

f / p �b�, and solid friction coefficient �s=�xy
s / p �c� in

planar shear cell experiment vs inertial parameter I= �̇ /�p for vari-
ous values of pressure p and values of the grain stiffness. Dashed
line on the panel �a� depicts the friction law, Eq. �4�, with param-
eters �1=0.22, �2=0.4, and I0=0.06.
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shear cell experiment vs scaled strain rate �inertia parameter� I
= �̇ /�p.
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� f

I
→ �0 � 1.95. �15�

Thus, our simulations suggest the following scaling of the
fluid part of the stress tensor �xy

f vs shear strain rate �̇ for
sufficiently large strain rates �̇:

�xy
f = �0

�p�̇ . �16�

While a similar expression was obtained earlier in Ref. �4�,
the result was interpreted as a manifestation of “generalized”
Bagnold rheology with the effective viscosity diverging at
the fluidization transition as �1 / ��c−��2 where �c is the
closed packed solid fraction.

For small strain rate values we find that the data collapse
occurs when � f is plotted against the parameter I /S and is in
fact controlled by the spring elasticity, see Fig. 3. For small
strain rates the simulations suggest a different scaling,

�xy
f = �

�̇

�1/2 , �17�

where ��1.05 is another dimensionless constant. The fact
that this constant is very close to 1 possibly implies that the
elastic response is rather local �one or few grain sizes� and is
related to a single grain deformability. Indeed, by the anal-
ogy with Eq. �3�, constant ��1 can be interpreted as an
effective renormalization of the typical length �in Eq. �3� this
length simply coincides with the grain size d�.

Correspondingly, for very small shear rates we obtain the
following expression for the solid friction coefficient:

�s = �eff − � f = �eff − �
�̇

p�1/2 = �eff − �I/S , �18�

where �s→�eff for �̇→0.
To summarize, our simulations suggest two distinct scal-

ing behaviors for small and large values of the strain rate.
Therefore, the constitutive relation �4� is only approximate
and valid for not too small values of the inertial parameter I
determined by the condition I�S. In general, the constitutive

relation should be the function of I and pressure p. We can
describe the data in the whole range of p and � values by the
following empiric law:

� f

I
= �0 + 	�

S
− �0
exp�− �I/S� . �19�

The best fit for the simulation’s data shown in Figs. 1�b� and
2 yields the following values of the parameters: �0�1.95,
�=1.05, and �=2.25. Figure 4 shows the parameters of Eq.
�19� in a wide range of the parameter S. As we see from Fig.
4, the parameters � and � are almost constant over the whole
range of S �more than a decade�.

As it follows from Eq. �19�, the transition between two
scaling regimes occurs when the inertia parameter I becomes
of the order of the compressibility parameter S. Thus, the
corresponding value of the strain rate is �̇c��1/2p. For very
stiff grains ��→0� the range of the second scaling given by
Eq. �17� shrinks, and the rheology is described by Eq. �16�
with a single parameter I, in agrement with Ref. �4�. More-
over, due to the exponential dependence of � f on I /S, the last
term in Eq. �19� is exponentially small for �→0, and, there-
fore, the single-parameter constitutive relation in the form
� f�I� is a rather accurate approximation in the majority of
practical situations.

The parameter S is relevant �in numerical simulations or
in real experiments� when the elastic moduli of the grains are
comparable or much smaller than the confining pressure p.
For gravity-driven avalanches it would mean that elastic
moduli are of the order �gd, which is in practice quite unre-
alistic. However, for higher confining pressures acting on
soft and highly compressible �e.g., polymeric� grains, this
effect may become relevant and would justify the use of a
modified rheology as described by relation �19�.
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FIG. 3. �Color online� Scaled data of the fluid friction �xy
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planar shear cell experiment against I /S= �̇ /�p /S. Collapse of the
data occurs for small strain rates.
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D. Calibration of the transition function

The zeroes of the transition function f , derived from the
derivative of the “free energy density” �	−1�f =dF /d	 �see
Eq. �10��, can be obtained from the same simulations of
shear flow as in the two-dimensional planar cell described in
the preceding section, see Ref. �19� and Fig. 5. The overall
behavior of the order parameter as a function of the control
parameter �, i.e., ratio of shear stress to normal stress, can be
summarized as follows: Ramping up the shear rate � results
in an abrupt jump of the order parameter from the static solid
value 	=1 to a small value 	�0.2 �the onset of flow� at �
�0.3 and further decrease of 	 towards zero with the in-
crease of �. Ramping down the value of � from a well flu-
idized state results in a gradual increase in 	 and consequent
jump from 	=	*�0.6 to 	=1 �flow arrest� at ��0.25 �hys-
teresis�.

A good fit to the bifurcation diagram is given by the fol-
lowing simple expression:

f = 	2 − 2		* + 	*
2 �1 − �� for � � 1,

f = 	2 − 		*�1 + ��� for � � 1, �20�

where �=A��2−�0
2� with A=15, �0=0.25, 	*=0.6.

The rationale for the expression �20� is the following:
Equation �20� has the roots f�	1,2�=0, 	1,2=	*�1���� for
��1 and 	2=	*�1+���, 	1=0 for ��1. Thus, one sees that
one of the roots, 	2=	*�1+���, remains identical for all �.
The other root, 	1=	*�1−���, becomes identically zero for
��1. It prevents unphysical negative values of the order
parameter for large � values. The parameters A ,�0 can be
found on the basis of two-dimensional simulations or ex-
tracted from a comparison with experimental data.

E. Stability domain, hstop, hstart

The parameters �0 ,A of the function f depend sensitively
on material properties of grains. In order to extract these
parameters from the chute flow experiment, we need to find
the vertical profile of the order parameter 	�z� for a steady-
state flow on an inclined plane and calculate independently
the value of hstop for each value of the inclination angle �.
The flow velocity can be obtained from the constitutive re-
lation for the fluid part of the stress.

The order parameter equation for steady-state shear flow
is of the form �18,19�

�z
2	 − �	 − 1�f�	,�� = 0 �21�

with the following boundary conditions: at the bottom z=0
one imposes 	�0�=1 �rough bottom favor solid state�, and on
free surface z=h the most natural boundary condition is
�z	�h�=0 �order parameter value is not fixed�.

Parameters defining the transition function f can be then
determined from matching the experimental values of hstop
and hstart, the value of thickness at which a static layer first
becomes unstable at a given slope � and corresponding pa-
rameter �. The value of hstart can be obtained from the linear
stability analysis of the time-dependent equation �21�. Sub-
stituting a solution of the form 	=1+� exp��t�sin��z /2h�,
�→0, we obtain for the growth rate of small perturbations
�=−f�1,��−�2 / �4h2�. The height hstart is obtained from the
condition �=0, which gives

hstart =
�

2�− f�1,��
. �22�

Using Eq. �20� one finds that hstart→� for �=A��2−�0
2�

= �1 /	*−1�2. This condition defines the asymptotic static re-
pose angle. For �→� the value of hstart decreases as hstart
�1 /��.

In order to determine hstop we need to find a nontrivial
trajectory �	�z��const� of Eq. �21� �18� satisfying the
boundary conditions 	�0�=1, �z	�z=h�=0 and attaining
minimal thickness of the layer h. This can be done by mini-
mization of the length of trajectories of Eq. �21�. Equation
�21� can be integrated by multiplication on �z	 �see for detail
�18��, yielding

��z	�2 − 2F�	� = c0, �23�

where the “free energy density” F�	�=�	�	−1�f�	 ,��d	 and
c0 is the constant of integration. Since �z	=0 at z=h, one can
set c0=−2�	̃�	−1�f�	 ,��d	, where 	̃ is the value of 	 at z
=h. Thus, hstop is given as

hstop = min �
	̃

1 d	

�2F�	� + c0

. �24�

This integral can be evaluated numerically. Analytical esti-
mates can be obtained for two cases, hstop→� and for �
→�. The value of hstop diverges at �→�stop, i.e., the dy-
namic repose angle. The value of �stop can be obtained ana-
lytically from the following consideration. The critical value
of �=�stop is defined by the condition that the length of non-
trivial trajectory of Eq. �21� diverges, which corresponds to
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FIG. 5. �Color online� Bifurcation diagram for planar shear cell
showing the order parameter 	 at steady-state regime vs control
parameter � obtained from simulations for different values of ap-
plied pressure p �reproduced from �19��. Open symbols correspond

to ramping up external driving force F̃, and closed symbols corre-
sponds to ramping down. Hysteretic behavior is evident. Thick lines
show the fit to Eq. �20�; solid lines indicate stable branch and
dashed line unstable branch.
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the existence of a separatrix connecting two fixed points, 	
=1 �solid� and 	=	1=	*�1−��� �liquid�. Other trajectories
of infinite length do not satisfy the boundary conditions. For
the chosen form of the free energy F �fourth-order polyno-
mial of 	� the existence of such a separatrix follows from the
conditions that the fixed points of Eq. �21� are equidistant:
1−	2=	2−	1 �for more general form of F one should use the
Maxwell rule �	2

1 �1−	�fd	=�	1

	2�1−	�fd	�. The condition of
equidistant roots yields the following expression �stop as
function of parameters A ,	*:

A��stop
2 − �0

2� = �1/	* − 1�2/9. �25�

Then, the dependence of hstop vs � for �→�stop can be
obtained from integral �24� by expanding the denominator
for �→�stop and 	→1, 	̃→	1. The calculations results in the
following behavior: hstop�−ln��−�stop� for �→�stop.

In order to match hstop and hstart curves, the outcome of
PFT theory is compared with experimental data to find val-
ues of A ,�0. As one sees from Fig. 6 corresponding to the
flow of sand on velvet �13,20�, the best fit occurs for A
=5.5 and �0=0.6. However, there is some systematic devia-
tion from experimental data, especially for hstart curve. It
likely stems from the fact that we use a simplified function f
�see Eq. �20�� which has been deduced from two-
dimensional simulations of a relatively small system �500
grains only�. Using a more complicated function f would
certainly improve the agreement. However, it would also in-
troduce additional adjustable parameters which we prefer to
avoid for the sake of simplicity of analysis.

IV. FLOWS OF ROUGH SANDY GRAINS DOWN
AN INCLINE

Experiments on smooth, nearly spherical beads have been
widely used to extract the rheology of sheared granular as-
semblies in the inclined plane geometry �1�. As we men-
tioned earlier, the systems involving irregular grains �e.g.,
rough sand� often show substantial deviations from the stan-

dard Pouliquen’s flow rule �1,13�. The problem of the flow
rule and the associated constitutive relation was studied ear-
lier by Malloggi et al. �13� using Fontainebleau sand of a
rather narrow size distribution �d=300��60� �m�. The
shape of those grains was rough and faceted; very different
from the regular spherical grains used by Pouliquen �2�.
Now, we recall here briefly the most salient feature needed
for a comparison with the PFT. The experimental system is
similar to the one used by Daerr and Douady �20�, and is
represented by a flow of Fontainebleau sand over a velvet
cloth. This system displays a rather wide bistability �hyster-
etic� domain between curves hstop and hstart, see Fig. 6. To
analyze the rheology of sand flows, an effective flow rule
was obtained first, as in Ref. �1�, by using the front velocity
Vfront of the avalanche spreading over the bare plane �see Fig.
7�. Note that the identification of Vfront with the mean �depth-
averaged� flow velocity Uf is only valid when the flow goes
down to the bottom of the plane. To identify the presence of
a jammed �static� layer of sand below the continuous flow of
grains, two independent experiments were then conducted.

Both experiments were conducted as close as possible to
the regime of continuous steady-state flow. Correspondingly,
the sand flux at the intake of the chute was determined by the
opening of a reservoir filled with sand. Since the amount of
granular material was limited, the duration of continuous
flow in our experiments was between 50 and 500 seconds,
depending on the flux values.

For the first experiment, a sooted blade was inserted in the
flow inducing an erosion of the soot limited to the upper
granular layers. After cessation of the flow, the blade was
removed and photographed. A sharp transition between the
eroded and the noneroded parts of the sooted blade was ob-
served from the image processing of the soot gray levels.
Our experiment shows that for the constant flux condition the
transition height between eroded and noneroded soot parts
was well defined. Consequently, the width of noneroded part
was related to the width of the jammed layer.

For the second experiment, a sand deposit was prepared at
a constant height close to hstop���. Then, a trench spanning

0.6 0.7 0.8 0.9
tan ϕ

0

5

10

15

h/
d

FIG. 6. Comparison of experimental data for sand on velvet
with expressions for hstart and hstop. Symbols are experimental
points for hstop ��� and hstart ��� �13,20�, lines are fits according to
Eq. �22� �dashed line� and Eq. �24� �solid line� with parameters
	*=0.6, A=5.5, �0=0.6.
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about 10 cm across and 2 cm along the slope at a downhill
distance of about 2 /3 of the plane length was dug down to
the bottom of the deposit. Then, the trench was filled to the
initial deposit height by packing layers by layer colored
grains, with each layer corresponding to a different color.
Once the deposit was reconstructed, the flow was initiated at
some fixed flux value. After cessation of the flow, the deposit
was excavated layer by layer and the remaining height of
immobile grains was determined from the corresponding
grain’s color. Both experiments consistently confirmed the
presence of a jammed layer �see inset of Fig. 8�, at least for
an experimental duration of continuous flow between
50–500 seconds.

Note that quasistatic or creeping layers were observed al-
ready in many other experiments, see, e.g., �5,7,35�, but they
likely stem from lateral boundary friction effects �5,36�. In
the present case of sandy grain flow, the static layer comes
from the interplay between rough bottom boundary and pos-
sibly, highly irregular shape of the grains. Indeed, in our
experiments the avalanche plane had a width about 1200
times the grain size d and the resulting granular flows had a
maximal height of about 20d. The jammed layer is around 3
to 8 times the grains size maximum. Therefore, we can ne-
glect the lateral boundary effects as a pertinent mechanism to
induce a jammed layer and modify the flow characteristics
�5,35,36�. Within experimental uncertainties, an empirical re-
lation for the static layer was established as zstat=Ad
+Bhstop, with the fitting constants A=−1.1��0.5� and B
=0.7��0.1�. The ratio of the average velocity to the surface
velocity, r=Uf /Vs, was measured as well. Note the values of
r were found to differ consistently from the local rheology
value: 3 /5 and to increase with the rolling layer thickness R
�see Fig. 9�. The data points were found around an average
value r=0.8��0.1�.

A. Calibration of the flow rule

In order to obtain the flow velocity we need to calculate
the vertical profile of the order parameter 	 from Eq. �21�. It

can be easily done from the integral �23�, which gives im-
plicitly z�	�, 	̃�	�1. Then the velocity is obtained from the
constitutive relation

�xz
f = �0d�p�̇ = q�	��xz, �0 = const, �26�

where function q�	� is calibrated from the relation, q�	�
= �1−	�u, see Eq. �9�. In the following, we have used the
value u=2.7 obtained from the early numerical simulations
�19�. However, we anticipate that in fact the value of u de-
pends on material properties, such as tangential friction,
grain shape, etc. We actually found that this parameter u
controls the relative width of the jammed layer which in-
creases with increasing of u and shrinks as u→0. Moreover,
with the decrease in the value of the parameter u, the ratios
of depth averaged to surface velocities r increases and ap-
proaches the 2 /3 value corresponding to the “Bagnold” rhe-
ology, see Fig. 9.

In the chute flow geometry the shear stress is �xz
=sin ��h−z� and the pressure is of the form p=cos ��h−z�.
Thus, from the strain rate �̇=�zvx we obtain an equation for
the downhill velocity in the rescaled variables

vx�z� =
sin �

�0
�cos �

�
0

z

q�	�z����h − z�dz�. �27�

Then, the mean flow velocity Uf =h−1�0
hvzdz can be obtained

by partial integration of Eq. �27�,

Uf =
1

h
�

0

h

vx�z�dz =
sin �

�0
�cos �h

�
0

h

q�	��h − z��3/2dz�.

�28�

Then, for each value of �, we determined the value of hstop
and mean flow velocity Uf in the range of all possible flow
thicknesses, hstop�h�hmax, where hmax is the maximal depth
above which the steady-state flow for a given value of the
angle � either ceases to exist or become unstable.
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FIG. 8. �Color online� Representative vertical velocity profiles,
Vx�z /d� for �=0.63 �32.2°� at different driving fluxes. Inset: res-
caled depth of the static layer zstat /d vs hstop /d �solid line�. Symbols
show that experimental data, squares show measurements using
erosion methods and circles showing colored sand method �see text
for explanations�.
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Here we must comment that the accessible range of thick-
nesses h /hstop is somewhat smaller than that in the experi-
ment since we consider steady-state flow only. There are sev-
eral factors limiting the range of existence for the steady-
state flow. As we showed early in Ref. �18�, for each value of
the slope angle � the stationary flow regime persists up to
some critical thickness. A further increase in flow width h
leads to gradual accumulation of the granular matter down
the flow direction and, consequently, readjustment of the
slope angle. Also, for very high flow rates the flow may
become unstable with the transition to accelerating flow �2�.
Alternatively, with the decrease in the flow width h, the flow
may become unstable with respect to long-surface wave in-
stability �so-called Kapiza waves �37��. As we have shown in
Ref. �6�, the Kapiza waves phenomenon is also captured in
the framework of partial fluidization theory. Note also that
the Kapiza waves are also observed for sandy grain flows in
this range of Froude numbers �37�.

Overall, 15 curves derived from the PFT theory are dis-
played in Fig. 7. They correspond to a broad range of slopes
from �=0.61 �angle �=31.4°, close to �stop in Fig. 6� up to
�=0.93 ��=42° �. As one sees, all curves, theoretical and
experimental, show the same tendency to cluster near a
single line but differently from the Pouliquen flow rule: The
lines do not have intercepts at the origin. We may also note
that within the data scatter, a line going through �h /hstop=1,
Fr=0� would be a first order fair representation of this raw
flow rule. Note that this is qualitatively similar to the data of
Deboeuf et al. �10� in the vicinity of jamming. Unfortunately,
the presence of various instabilities discussed above prevents
us from going simply to much higher values of h /hstop.

Here, we chose to display the Froude number Fr
=Uf /�gh cos��� with the g cos � component that represents
the actual confining part of the pressure in an avalanche ex-
periment. Nevertheless, this choice made for the sake of con-
sistency with a theoretical description using an effective rhe-
ology, has no practical influence on the results and on the
effective flow rule, because of the remaining data scatter.
Therefore, this choice of parameters provides a quantitative
agreement, not only for the stability diagram but also for the
effective flow rule.

Note that we also explored the flow rule for a generalized
constitutive relation in the generalized form �19� found for
soft spheres. It produced only a slight improvement, but
qualitatively the results remain the same. Thus, we conclude
that the part of the constitutive relation associated with the
grain compressibility is not manifested in the flow rule at
typical parameter values.

B. Velocity profile and the onset of flow

Now we focus on the flow profiles near the onset. Figure
8 shows the vertical velocity profiles obtained from Eq. �27�
for different values of h. As one sees, for this choice of
parameter, all velocity profiles display a quasistatic layer zstat
where the velocity is almost zero.

In the flowing layer the velocity changes almost linearly,
except for a small boundary layer �due to no-flux boundary
condition� at the free surface. The velocity profiles are simi-

lar to those obtained in simulations for flows over a rough
bottom, see �1�. Therefore, the quasistatic layer is a new
intrinsic feature of partially fluidized flows at the onset of
flow �jamming�. It corresponds to a region where the veloc-
ity is significantly smaller than the mean �or the surface�
velocity. This also could be called a creeping region. It is
rather challenging to measure the velocity profiles in the
static layer. One can only test if the displacement of the
grains at a given location in the bulk are noticeable over the
duration of the experiment �in practice limited by the avail-
able mass of grains�. In this work, we define the location of
the static layer by the condition v�z=zstat�=0.1v�z=h� �other
threshold conditions give similar results�. Moreover, our
studies show that the static layer thickness zstat does not prac-
tically depend on the total flow thickness �or total grain flux�.
It allows to parametrize the dependence of zstat on the value
of hstop only, as it is shown in the inset of Fig. 8.

As it follows from Fig. 8, the depth of the static layer
shrinks with the decrease of hstop, i.e., with the increase of
the slope angle �. For comparison, we show the experimen-
tal data for zstat normalized by the grain size for the two
different methods described earlier. It turns out that the nu-
merical data goes right in between the experimental points
that can be viewed as higher and lower bounds for the deter-
mination of the static layer. To obtain insight into the flow
profiles and the relationship between theory and experiment,
we compared different flow velocity ratios. Note that for the
Bagnold flow with a velocity going down to zero at the bot-
tom of the chute one obtains a ratio of the mean flow �equal
to Uf� to the surface flow Vs with a value r=0.6. Our analysis
shows that the apparent value of r=Uf /Vs is of the order of
0.3 for h→hstop and gradually increases approaching the
value 0.45 with the increase in flow thickness h. Thus, the
apparent ratio r is smaller than that of the Bagnold or linear
velocity profile, which is obviously due to the presence of a
static layer. For comparison, Fig. 9 depicts ratios r=Uf /Vs
for both theory and experiment. The experimental and theo-
retical domains for the corresponding values of h /hstop only
weakly overlap. Nevertheless, in both cases, we evidence an
increase of r at larger flowing heights. However, it seems
that for this choice of theoretical parameters, the experimen-
tal values �0.5�r�0.55� are slightly higher in the overlap-
ping domain than the theoretical one, 0.4�r�0.45. Further-
more, the theoretical analysis also indicates that the value or
r depends on the value of the exponent u in Eq. �9�: r in-
creases with the decrease of u, as it is illustrated in Fig. 9.
The corresponding flow rule is also closer to what was found
by �10� for an assembly of rough glass spheres, where a
crossover between a Pouliquen-like flow rule and a line in-
tercepting at zero for h /hstop=1 was observed.

For larger values h /hstop�4 the parameter r increases and
approaches the 0.8 which can be interpreted as a formation
of a plug flow �vz�z��const�. However, on the qualitative
level the formation of a plug flow profile could be treated as
a strong velocity gradient in the jammed region which would
act almost as an effective finite velocity slip at the scale of
one grain. It would be interesting to see if the PFT model
pushed in the limit of thick flows �gravity surface waves
included� would be able to describe this feature.

Our study shows that after a thorough calibration against
experiments, we are in a position to provide a clear-cut vi-
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sion of capacities and limitations of the PFT. It becomes
clear that a crucial issue is the choice of a mixing function
between the solid and the liquid phases �described here by
the exponent u�. Adjusting this parameter yields a flow that
looks more like a plug flow since the capacity to mix solid
and liquid can be rendered very sharp. However, this also
limits the calibration of the PFT since we do not have at the
moment a theory to justify a proper choice of this critical
parameter. Therefore, we leave this nontrivial problem to fu-
ture studies.

V. EROSION DEPOSITION WAVES

A. Experimental solitary waves

Propagating avalanches on an erodible layer of grains
were studied experimentally on glass bead layers �8,20� as
well as on sandy layers �8,12,13,21�. A particularly interest-
ing family of such avalanches are solitary waves �12,13,21�.
In order to produce such stable solitary erosion-deposition
wave, the following experimental technique is used. After
the deposition of a layer of grains at h=hstop a mass of grains
is scraped by a bulldozer technique �see �12� for details�.
Beyond a minimal mass of grains, mc, set into motion, one
obtains a solitary �or autonomous� avalanche. As the layer
thickness left behind the wave is the same as in the front, the
mean moving mass is thus conserved �see Fig. 10�a��. These
solitary waves have an asymmetric “shark-teeth” shape. The
velocity of this solitary wave va, which is on the order of
�gd�5–10 cm /s, quickly saturates to a certain asymptotic
value. The asymptotic velocity is an increasing function of
the mass of grains set into motion. For a given angle, there is
a family of solitary avalanching solutions. Nevertheless, if a
mass set into motion is too large, the avalanche will split into
smaller pieces in order to maintain avalanching masses com-
patible with an upper critical value depending on the incli-
nation angle. Analysis of the surface velocity and the corre-
sponding avalanche profile exhibit three distinct regions �see
Fig. 10�a��: �i� the front, where inertia is important, 1100
�x /d�1200, �ii� the central body, 500�x /d�1100, where
inertia is not relevant and for which the height and the ve-
locity are related, and, finally �iii� a tail region, x /d�500,
where h�hstop is reached and only about one layer of beads
is still rolling on the surface. These are general and robust
features of such an erosion-deposition wave. This solitary
wave phenomenology is an important situation since it cre-
ates an opportunity to gain insight into the dynamics of
erosion-deposition processes very close to the jamming on-
set; an issue which is still unclear from its basic physical
stand point. Moreover, as we will see below, it allows the
possibility of a unique direct comparative study with the par-
tial fluidization theory.

B. Theoretical analysis using PFT

The model of avalanches proposed by Savage and Hutter
�38� is based on a depth-averaged description �so-called
Saint-Venant-type approach� with an effective basal friction
coefficient. The constant value of the friction coefficient can-
not assure a stability of steady flow. In more recent versions

of this model, Pouliquen and Forterre �39� have refined the
scheme by introducing a rate-dependent flow rheology that
describes more successfully this phenomenon. However, this
approach is unable to handle properly the phenomenology in
the metastable region as well as erosion-deposition mecha-
nisms occurring in the bulk of an avalanche. Furthermore, it
cannot provide detailed information on the vertical flow pro-
files.

The analysis of avalanches in earlier work �21� was
implemented for a simplified rheology assuming pressure-
independent viscosity and very thin granular layers when the
formation of a static layer was unimportant. Already, at a
qualitative level, the essential phenomenology of pattern for-
mation was recovered such as avalanche velocity selection,
shape, transversal instability. Now, we want to pursue the
refinement of the PFT by incorporating a more realistic rhe-
ology and to obtain information of the dynamics of the
jammed layer. In Ref. �21� the avalanches were analyzed
when the vertical structure of the order parameter was fixed
and the static layer was ignored, allowing for reduction of
Eq. �10� to a much simpler model. However, this approxima-
tion breaks down in thicker layers. In order to describe ava-
lanches in deeper layers, one needs to solve directly Eq. �10�
in two-dimensional geometry �x ,z� with a free surface
boundary condition. Thus, the following equation was solved
numerically:
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FIG. 10. �Color online� Solitary avalanche profiles. �a� Experi-
mental profiles of avalanche height h and surface velocity v on
Fontainebleau sand at an angle �=32° and for a trapped mass
onset mc=8900��200�d2. The avalanche velocity is va

=1.9��0.1��gd�1/2. �b� Numerical profiles h�x� ,v�x� and static layer
depth zstat from the PFT theory for �0=0.633 �or �=32.3°�,
hstop=5.8.
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D	/Dt = ��z
2 + �x

2�	 − �	 − 1�f�	,�� , �29�

where function f is given by condition �20�, D /Dt is a ma-
terial derivative. The evolution of layer thickness h was ob-
tained from the mass conservation condition

�th = − �xJ �30�

with the flux J=�0
hv�z�dz=hUf, see Eq. �28�. We take into

account that local angle changes also due to the change in
layer thickens h, i.e., �=�0−�xh, �0=tan �0=const. Thus, it
gives rise to the equation

�th = −
sin �0

�0
�cos �0

�x	�1 − �xh/�0��
0

h

q�	��h − z�3/2dz
 .

�31�

We solved Eqs. �29� and �30� using the following method.
Equation �29� was solved on rectangular domain Nx
Nz,
periodic in the x direction, with the boundary conditions 	
=1 for z=0, �z	=0 for z=h. Equidistant mesh was used in
the x direction. In the z direction the mesh size was scaled by
h, dz=h�x� /Nz. Correspondingly, the height h was obtained
from Eq. �31�. We used Nx=800, Nz=50, and length in the x
direction L=400. As an initial condition we choose localized
bump. After some transient the bump turns into localized
avalanche traveling with a constant speed. In Fig. 10, we
show the stationary profile obtained at ��32°. The shape of
the avalanche and the velocity profile are qualitatively simi-
lar to the experimental observations. However, the numerical
value for the maximum height is lower than in the experi-
ment. From the numerical results, we were also able to ob-
tain the depth of the static layer beneath the moving ava-
lanche, zstat. As one sees from Fig. 10, only a small fraction
of the sand is fluidized �zstat�z�h� in the course of ava-
lanche propagation; the rest of the material is in a static state.
Moreover, the surface velocity v�x� has a characteristic peak
similar to that observed in the experiment �12�. However, for
the present set of model parameters, the width of the experi-
mental avalanche is about 2–3 times larger than that of the
theoretical outcome, see Fig. 11. Note also that both experi-
mentally �13� or numerically �21� a small increase of the
width occurs with the trapped mass �less than 20%�. Experi-
mentally, the data were taken at the onset of the critical mass
for solitary wave propagation. This result suggests that there
is a need for a systematic exploration of the simulation pa-
rameters in order to see if there is the possibility for a given
class of material to match quantitatively �i� flow rule, �ii�
velocity ratios, and �iii� solitary avalanche features. This is
up to now the most stringent series of tests for any theoreti-
cal description of erosion-deposition processes in granular
matter. In the context of PFT, we leave this systematic ex-
ploration for a future report.

In addition, as one can see in Fig. 11, the tail of experi-
mental solitary wave is significantly larger than that of the
PFT solution. In experiment, a significant fraction of the
solitary-wave back tail corresponds to a very thin layer of
grains still flowing at h=hstop. It is likely that this fraction of
the tail is moving because of internal vibrations of grains
�sound modes� present in the rear of the avalanche in spite of

the fact that thickness of granular layer h reaches hstop. To
illustrate this point, we show in Fig. 11 the original wave-
length minus a part corresponding to a significant surface
flow at h=hstop �within one grain size�, which roughly com-
prises one-half of the total length. This effect is not captured
by the PFT as it is likely due to a coupling between the flow
and the internal vibrational degrees of freedom. Indeed, since
at h=hstop the granular packing is close to arrest, it is appar-
ently in a very fragile state. Thus, the flow conditions are
likely to be modified by small internal or external vibrations.
Note also that a similar effect was indirectly observed in an
earlier paper, Ref. �18�, when comparing numerical simula-
tions with PFT results �see Fig. 2�a� in Ref. �18��. It turns out
that in numerical simulations for thin layers, the velocity at
the liquid-solid transition is almost continuous. On the con-
trary, the PFT exhibits a discontinuous transition.

VI. CONCLUSIONS

In this paper we focused on the rheological properties of
dense sheared granular flows. On the basis of two-
dimensional molecular dynamics simulations, we were able
to propose constitutive relations for stresses in partially flu-
idized granular flows. We found that the “universal” single-
parametric constitutive relation proposed in Refs. �2,5,27� is
in fact valid only for not too small values of the normalized
strain rates. For smaller strain rates the stiffness of grains
comes into play and rather different scalings between shear
stress, strain rate, and pressure ensues. The scaling is char-
acterized by dimensionless parameter S relevant when the
elastic moduli of the grains are comparable or much smaller
than the confining pressure p. While in a recent work by da
Cruz et al. �4�, similar numerical evidence was obtained, in
our work we were able to incorporate the effects of finite
grain elasticity in the generalized constitutive relation �19�.
Our results emphasize the importance of grain compressibil-
ity when the local contact forces induce deformations that
are likely to change the contact configuration faster than a
gravity driven grains rearrangement. However, for the
laboratory-scale gravity-driven flows down an incline this
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FIG. 11. �Color online� Width of the solitary wave L vs angle �
�in degrees� in experiment and theory. Experimental curve 1 depicts
entire length of the avalanche, and experimental curve 2 shows the
original length minus a tail part where h�hstop within 1 grain size
�see discussion below�.
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behavior can be observed only for very soft and compress-
ible particles �e.g., polymeric grains� with the elastic moduli
are of the order �gd. For gravity-driven avalanches of glass
beads or sand this assumption is rather unrealistic, so the
additional scaling regime for very small shear rates could be
very hard to observe.

An experimental verification of our findings through mea-
sured stress-strain relationships for particles with different
elasticity but in otherwise identical experimental conditions
is highly desirable. Another important issue is the effect of
dimensionality and particle roughness. While we believe that
our two-dimensional simulations are representative and cor-
respond to the actual phenomena, at least on a qualitative
level, further three-dimensional checks are needed. We dem-
onstrated that the flow rule for granular flows in a thin chute
with rough bottom �1� can be deduced from the partial flu-
idization theory. According to our theory, the flow rule ap-
pears to be satisfied only approximately, with small but sys-
tematic deviations from a universal master curve. However,
since our theoretical model is also based on approximate
expressions for the free energy and for the constitutive rela-
tions, the existence of an exact flow rule where all curves
would collapse remains an open question. Another interest-
ing question in this context is what needs to be changed in
the partial fluidization theory in order to obtain different flow
rules, especially in the vicinity of jamming. In the framework
of PFT, it is feasible that for both the free energy and the
order parameter “mixing” function q�	� must be changed to
match a given experimental system. Unlike our previous
studies, we were able to extend our calculations beyond the
regime of thin chute flow. We adjusted the outcome of the
PFT in order to match avalanche experiments performed

with sand on a rough incline. We obtain a quantitative agree-
ment with the effective flow rule, different from the Poul-
iquen’s flow rule, where the corresponding Froude number
vanishes as the stopping height hstop is approached. Further-
more, for this set of parameters, the existence of a creeping
layer spontaneously forming beneath the well-fluidized part
of the avalanche is observed, in agreement with the experi-
mental findings. In addition, in the framework of PFT we
identified an important feature associated with the “mixing”
function q�	� that is essential to render the existence of a
jammed layer and, thus, allowing for more close comparison
with a given class of granular material.

Finally, we used a complete set of equations for partial
fluidization model in order to study the shape of the solitary
avalanches flowing down a rough inclined plane. For most of
the measured features, the results are in a qualitative agree-
ment with the experimental measurements on sand. How-
ever, in the present form, the PFT underestimates the width
of the experimental avalanche by a factor of 3. Excitation of
internal vibrational degrees of freedom �sound modes� in the
tail of sandy avalanche is proposed as one of the possible
reasons for this discrepancy. This effect is not currently in-
corporated in the PFT and is left for the future studies.
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